Metamath Proof Explorer


Theorem fnfvelrnd

Description: A function's value belongs to its range. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses fnfvelrnd.1 φFFnA
fnfvelrnd.2 φBA
Assertion fnfvelrnd φFBranF

Proof

Step Hyp Ref Expression
1 fnfvelrnd.1 φFFnA
2 fnfvelrnd.2 φBA
3 fnfvelrn FFnABAFBranF
4 1 2 3 syl2anc φFBranF