Metamath Proof Explorer


Theorem fnfvima

Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015)

Ref Expression
Assertion fnfvima FFnASAXSFXFS

Proof

Step Hyp Ref Expression
1 fnfun FFnAFunF
2 1 3ad2ant1 FFnASAXSFunF
3 simp2 FFnASAXSSA
4 fndm FFnAdomF=A
5 4 3ad2ant1 FFnASAXSdomF=A
6 3 5 sseqtrrd FFnASAXSSdomF
7 2 6 jca FFnASAXSFunFSdomF
8 simp3 FFnASAXSXS
9 funfvima2 FunFSdomFXSFXFS
10 7 8 9 sylc FFnASAXSFXFS