Metamath Proof Explorer


Theorem fnop

Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994)

Ref Expression
Assertion fnop FFnABCFBA

Proof

Step Hyp Ref Expression
1 df-br BFCBCF
2 fnbr FFnABFCBA
3 1 2 sylan2br FFnABCFBA