Metamath Proof Explorer


Theorem fnopabeqd

Description: Equality deduction for function abstractions. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis fnopabeqd.1 φB=C
Assertion fnopabeqd φxy|xAy=B=xy|xAy=C

Proof

Step Hyp Ref Expression
1 fnopabeqd.1 φB=C
2 1 eqeq2d φy=By=C
3 2 anbi2d φxAy=BxAy=C
4 3 opabbidv φxy|xAy=B=xy|xAy=C