Metamath Proof Explorer


Theorem fnopabg

Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004) (Proof shortened by Mario Carneiro, 4-Dec-2016)

Ref Expression
Hypothesis fnopabg.1 F=xy|xAφ
Assertion fnopabg xA∃!yφFFnA

Proof

Step Hyp Ref Expression
1 fnopabg.1 F=xy|xAφ
2 moanimv *yxAφxA*yφ
3 2 albii x*yxAφxxA*yφ
4 funopab Funxy|xAφx*yxAφ
5 df-ral xA*yφxxA*yφ
6 3 4 5 3bitr4ri xA*yφFunxy|xAφ
7 dmopab3 xAyφdomxy|xAφ=A
8 6 7 anbi12i xA*yφxAyφFunxy|xAφdomxy|xAφ=A
9 r19.26 xA*yφyφxA*yφxAyφ
10 df-fn xy|xAφFnAFunxy|xAφdomxy|xAφ=A
11 8 9 10 3bitr4i xA*yφyφxy|xAφFnA
12 df-eu ∃!yφyφ*yφ
13 12 biancomi ∃!yφ*yφyφ
14 13 ralbii xA∃!yφxA*yφyφ
15 1 fneq1i FFnAxy|xAφFnA
16 11 14 15 3bitr4i xA∃!yφFFnA