Metamath Proof Explorer


Theorem fnotovb

Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb . (Contributed by NM, 17-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015) (Proof shortened by BJ, 15-Feb-2022)

Ref Expression
Assertion fnotovb FFnA×BCADBCFD=RCDRF

Proof

Step Hyp Ref Expression
1 fnbrovb FFnA×BCADBCFD=RCDFR
2 df-br CDFRCDRF
3 2 a1i FFnA×BCADBCDFRCDRF
4 df-ot CDR=CDR
5 4 eqcomi CDR=CDR
6 5 eleq1i CDRFCDRF
7 6 a1i FFnA×BCADBCDRFCDRF
8 1 3 7 3bitrd FFnA×BCADBCFD=RCDRF
9 8 3impb FFnA×BCADBCFD=RCDRF