Metamath Proof Explorer


Theorem fnresdm

Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004)

Ref Expression
Assertion fnresdm FFnAFA=F

Proof

Step Hyp Ref Expression
1 fnrel FFnARelF
2 fndm FFnAdomF=A
3 eqimss domF=AdomFA
4 2 3 syl FFnAdomFA
5 relssres RelFdomFAFA=F
6 1 4 5 syl2anc FFnAFA=F