Metamath Proof Explorer


Theorem fnresin

Description: Restriction of a function with a subclass of its domain. (Contributed by Thierry Arnoux, 10-Oct-2017)

Ref Expression
Assertion fnresin FFnAFBFnAB

Proof

Step Hyp Ref Expression
1 fnresin1 FFnAFABFnAB
2 resindi FAB=FAFB
3 fnresdm FFnAFA=F
4 3 ineq1d FFnAFAFB=FFB
5 incom FBF=FFB
6 resss FBF
7 df-ss FBFFBF=FB
8 6 7 mpbi FBF=FB
9 5 8 eqtr3i FFB=FB
10 4 9 eqtrdi FFnAFAFB=FB
11 2 10 eqtrid FFnAFAB=FB
12 11 fneq1d FFnAFABFnABFBFnAB
13 1 12 mpbid FFnAFBFnAB