Metamath Proof Explorer


Theorem fnseqom

Description: An index-aware recursive definition defines a function on the natural numbers. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis seqom.a G=seqωFI
Assertion fnseqom GFnω

Proof

Step Hyp Ref Expression
1 seqom.a G=seqωFI
2 seqomlem0 recaω,bVsucaaFbII=reccω,dVsucccFdII
3 2 seqomlem2 recaω,bVsucaaFbIIωFnω
4 df-seqom seqωFI=recaω,bVsucaaFbIIω
5 1 4 eqtri G=recaω,bVsucaaFbIIω
6 5 fneq1i GFnωrecaω,bVsucaaFbIIωFnω
7 3 6 mpbir GFnω