Metamath Proof Explorer


Theorem fnum

Description: Canonical numerator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion fnum numer:

Proof

Step Hyp Ref Expression
1 df-numer numer=a1stιb×|1stbgcd2ndb=1a=1stb2ndb
2 qnumval anumera=1stιb×|1stbgcd2ndb=1a=1stb2ndb
3 qnumcl anumera
4 2 3 eqeltrrd a1stιb×|1stbgcd2ndb=1a=1stb2ndb
5 1 4 fmpti numer: