Metamath Proof Explorer


Theorem fococnv2

Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015)

Ref Expression
Assertion fococnv2 F:AontoBFF-1=IB

Proof

Step Hyp Ref Expression
1 fofun F:AontoBFunF
2 funcocnv2 FunFFF-1=IranF
3 1 2 syl F:AontoBFF-1=IranF
4 forn F:AontoBranF=B
5 4 reseq2d F:AontoBIranF=IB
6 3 5 eqtrd F:AontoBFF-1=IB