Metamath Proof Explorer


Theorem fof

Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994)

Ref Expression
Assertion fof F:AontoBF:AB

Proof

Step Hyp Ref Expression
1 eqimss ranF=BranFB
2 1 anim2i FFnAranF=BFFnAranFB
3 df-fo F:AontoBFFnAranF=B
4 df-f F:ABFFnAranFB
5 2 3 4 3imtr4i F:AontoBF:AB