Metamath Proof Explorer


Theorem fprodaddrecnncnv

Description: The sequence S of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses fprodaddrecnncnv.1 kφ
fprodaddrecnncnv.2 φXFin
fprodaddrecnncnv.3 φkXA
fprodaddrecnncnv.4 S=nkXA+1n
Assertion fprodaddrecnncnv φSkXA

Proof

Step Hyp Ref Expression
1 fprodaddrecnncnv.1 kφ
2 fprodaddrecnncnv.2 φXFin
3 fprodaddrecnncnv.3 φkXA
4 fprodaddrecnncnv.4 S=nkXA+1n
5 eqid xkXA+x=xkXA+x
6 oveq2 m=n1m=1n
7 6 cbvmptv m1m=n1n
8 1 2 3 4 5 7 fprodaddrecnncnvlem φSkXA