Metamath Proof Explorer


Theorem fprodp1s

Description: Multiply in the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017)

Ref Expression
Hypotheses fprodp1s.1 φNM
fprodp1s.2 φkMN+1A
Assertion fprodp1s φk=MN+1A=k=MNAN+1/kA

Proof

Step Hyp Ref Expression
1 fprodp1s.1 φNM
2 fprodp1s.2 φkMN+1A
3 2 ralrimiva φkMN+1A
4 nfcsb1v _km/kA
5 4 nfel1 km/kA
6 csbeq1a k=mA=m/kA
7 6 eleq1d k=mAm/kA
8 5 7 rspc mMN+1kMN+1Am/kA
9 3 8 mpan9 φmMN+1m/kA
10 csbeq1 m=N+1m/kA=N+1/kA
11 1 9 10 fprodp1 φm=MN+1m/kA=m=MNm/kAN+1/kA
12 nfcv _mA
13 12 4 6 cbvprodi k=MN+1A=m=MN+1m/kA
14 12 4 6 cbvprodi k=MNA=m=MNm/kA
15 14 oveq1i k=MNAN+1/kA=m=MNm/kAN+1/kA
16 11 13 15 3eqtr4g φk=MN+1A=k=MNAN+1/kA