Metamath Proof Explorer


Theorem fprodp1

Description: Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017)

Ref Expression
Hypotheses fprodp1.1 φNM
fprodp1.2 φkMN+1A
fprodp1.3 k=N+1A=B
Assertion fprodp1 φk=MN+1A=k=MNAB

Proof

Step Hyp Ref Expression
1 fprodp1.1 φNM
2 fprodp1.2 φkMN+1A
3 fprodp1.3 k=N+1A=B
4 peano2uz NMN+1M
5 1 4 syl φN+1M
6 5 2 3 fprodm1 φk=MN+1A=k=MN+1-1AB
7 eluzelz NMN
8 1 7 syl φN
9 8 zcnd φN
10 1cnd φ1
11 9 10 pncand φN+1-1=N
12 11 oveq2d φMN+1-1=MN
13 12 prodeq1d φk=MN+1-1A=k=MNA
14 13 oveq1d φk=MN+1-1AB=k=MNAB
15 6 14 eqtrd φk=MN+1A=k=MNAB