Metamath Proof Explorer


Theorem fprodm1s

Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017)

Ref Expression
Hypotheses fprodm1s.1 φNM
fprodm1s.2 φkMNA
Assertion fprodm1s φk=MNA=k=MN1AN/kA

Proof

Step Hyp Ref Expression
1 fprodm1s.1 φNM
2 fprodm1s.2 φkMNA
3 2 ralrimiva φkMNA
4 nfcsb1v _km/kA
5 4 nfel1 km/kA
6 csbeq1a k=mA=m/kA
7 6 eleq1d k=mAm/kA
8 5 7 rspc mMNkMNAm/kA
9 3 8 mpan9 φmMNm/kA
10 csbeq1 m=Nm/kA=N/kA
11 1 9 10 fprodm1 φm=MNm/kA=m=MN1m/kAN/kA
12 nfcv _mA
13 12 4 6 cbvprodi k=MNA=m=MNm/kA
14 12 4 6 cbvprodi k=MN1A=m=MN1m/kA
15 14 oveq1i k=MN1AN/kA=m=MN1m/kAN/kA
16 11 13 15 3eqtr4g φk=MNA=k=MN1AN/kA