Metamath Proof Explorer


Theorem frege108d

Description: If either A and C are the same or C follows A in the transitive closure of Rand B is the successor to C , then either A and B are the same or B follows A in the transitive closure of R . Similar to Proposition 108 of Frege1879 p. 74. Compare with frege108 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege108d.r φ R V
frege108d.a φ A V
frege108d.b φ B V
frege108d.c φ C V
frege108d.ac φ A t+ R C A = C
frege108d.cb φ C R B
Assertion frege108d φ A t+ R B A = B

Proof

Step Hyp Ref Expression
1 frege108d.r φ R V
2 frege108d.a φ A V
3 frege108d.b φ B V
4 frege108d.c φ C V
5 frege108d.ac φ A t+ R C A = C
6 frege108d.cb φ C R B
7 1 2 3 4 5 6 frege102d φ A t+ R B
8 7 frege106d φ A t+ R B A = B