Metamath Proof Explorer


Theorem frege109d

Description: If A contains all elements of U and all elements after those in U in the transitive closure of R , then the image under R of A is a subclass of A . Similar to Proposition 109 of Frege1879 p. 74. Compare with frege109 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege109d.r φ R V
frege109d.a φ A = U t+ R U
Assertion frege109d φ R A A

Proof

Step Hyp Ref Expression
1 frege109d.r φ R V
2 frege109d.a φ A = U t+ R U
3 trclfvlb R V R t+ R
4 imass1 R t+ R R U t+ R U
5 1 3 4 3syl φ R U t+ R U
6 coss1 R t+ R R t+ R t+ R t+ R
7 1 3 6 3syl φ R t+ R t+ R t+ R
8 trclfvcotrg t+ R t+ R t+ R
9 7 8 sstrdi φ R t+ R t+ R
10 imass1 R t+ R t+ R R t+ R U t+ R U
11 9 10 syl φ R t+ R U t+ R U
12 5 11 unssd φ R U R t+ R U t+ R U
13 ssun2 t+ R U U t+ R U
14 12 13 sstrdi φ R U R t+ R U U t+ R U
15 2 imaeq2d φ R A = R U t+ R U
16 imaundi R U t+ R U = R U R t+ R U
17 imaco R t+ R U = R t+ R U
18 17 eqcomi R t+ R U = R t+ R U
19 18 uneq2i R U R t+ R U = R U R t+ R U
20 16 19 eqtri R U t+ R U = R U R t+ R U
21 15 20 eqtrdi φ R A = R U R t+ R U
22 14 21 2 3sstr4d φ R A A