Metamath Proof Explorer


Theorem frege109d

Description: If A contains all elements of U and all elements after those in U in the transitive closure of R , then the image under R of A is a subclass of A . Similar to Proposition 109 of Frege1879 p. 74. Compare with frege109 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege109d.r
|- ( ph -> R e. _V )
frege109d.a
|- ( ph -> A = ( U u. ( ( t+ ` R ) " U ) ) )
Assertion frege109d
|- ( ph -> ( R " A ) C_ A )

Proof

Step Hyp Ref Expression
1 frege109d.r
 |-  ( ph -> R e. _V )
2 frege109d.a
 |-  ( ph -> A = ( U u. ( ( t+ ` R ) " U ) ) )
3 trclfvlb
 |-  ( R e. _V -> R C_ ( t+ ` R ) )
4 imass1
 |-  ( R C_ ( t+ ` R ) -> ( R " U ) C_ ( ( t+ ` R ) " U ) )
5 1 3 4 3syl
 |-  ( ph -> ( R " U ) C_ ( ( t+ ` R ) " U ) )
6 coss1
 |-  ( R C_ ( t+ ` R ) -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) )
7 1 3 6 3syl
 |-  ( ph -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) )
8 trclfvcotrg
 |-  ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R )
9 7 8 sstrdi
 |-  ( ph -> ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) )
10 imass1
 |-  ( ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) -> ( ( R o. ( t+ ` R ) ) " U ) C_ ( ( t+ ` R ) " U ) )
11 9 10 syl
 |-  ( ph -> ( ( R o. ( t+ ` R ) ) " U ) C_ ( ( t+ ` R ) " U ) )
12 5 11 unssd
 |-  ( ph -> ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) ) C_ ( ( t+ ` R ) " U ) )
13 ssun2
 |-  ( ( t+ ` R ) " U ) C_ ( U u. ( ( t+ ` R ) " U ) )
14 12 13 sstrdi
 |-  ( ph -> ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) ) C_ ( U u. ( ( t+ ` R ) " U ) ) )
15 2 imaeq2d
 |-  ( ph -> ( R " A ) = ( R " ( U u. ( ( t+ ` R ) " U ) ) ) )
16 imaundi
 |-  ( R " ( U u. ( ( t+ ` R ) " U ) ) ) = ( ( R " U ) u. ( R " ( ( t+ ` R ) " U ) ) )
17 imaco
 |-  ( ( R o. ( t+ ` R ) ) " U ) = ( R " ( ( t+ ` R ) " U ) )
18 17 eqcomi
 |-  ( R " ( ( t+ ` R ) " U ) ) = ( ( R o. ( t+ ` R ) ) " U )
19 18 uneq2i
 |-  ( ( R " U ) u. ( R " ( ( t+ ` R ) " U ) ) ) = ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) )
20 16 19 eqtri
 |-  ( R " ( U u. ( ( t+ ` R ) " U ) ) ) = ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) )
21 15 20 eqtrdi
 |-  ( ph -> ( R " A ) = ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) ) )
22 14 21 2 3sstr4d
 |-  ( ph -> ( R " A ) C_ A )