| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege109d.r |
|- ( ph -> R e. _V ) |
| 2 |
|
frege109d.a |
|- ( ph -> A = ( U u. ( ( t+ ` R ) " U ) ) ) |
| 3 |
|
trclfvlb |
|- ( R e. _V -> R C_ ( t+ ` R ) ) |
| 4 |
|
imass1 |
|- ( R C_ ( t+ ` R ) -> ( R " U ) C_ ( ( t+ ` R ) " U ) ) |
| 5 |
1 3 4
|
3syl |
|- ( ph -> ( R " U ) C_ ( ( t+ ` R ) " U ) ) |
| 6 |
|
coss1 |
|- ( R C_ ( t+ ` R ) -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) ) |
| 7 |
1 3 6
|
3syl |
|- ( ph -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) ) |
| 8 |
|
trclfvcotrg |
|- ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) |
| 9 |
7 8
|
sstrdi |
|- ( ph -> ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) ) |
| 10 |
|
imass1 |
|- ( ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) -> ( ( R o. ( t+ ` R ) ) " U ) C_ ( ( t+ ` R ) " U ) ) |
| 11 |
9 10
|
syl |
|- ( ph -> ( ( R o. ( t+ ` R ) ) " U ) C_ ( ( t+ ` R ) " U ) ) |
| 12 |
5 11
|
unssd |
|- ( ph -> ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) ) C_ ( ( t+ ` R ) " U ) ) |
| 13 |
|
ssun2 |
|- ( ( t+ ` R ) " U ) C_ ( U u. ( ( t+ ` R ) " U ) ) |
| 14 |
12 13
|
sstrdi |
|- ( ph -> ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) ) C_ ( U u. ( ( t+ ` R ) " U ) ) ) |
| 15 |
2
|
imaeq2d |
|- ( ph -> ( R " A ) = ( R " ( U u. ( ( t+ ` R ) " U ) ) ) ) |
| 16 |
|
imaundi |
|- ( R " ( U u. ( ( t+ ` R ) " U ) ) ) = ( ( R " U ) u. ( R " ( ( t+ ` R ) " U ) ) ) |
| 17 |
|
imaco |
|- ( ( R o. ( t+ ` R ) ) " U ) = ( R " ( ( t+ ` R ) " U ) ) |
| 18 |
17
|
eqcomi |
|- ( R " ( ( t+ ` R ) " U ) ) = ( ( R o. ( t+ ` R ) ) " U ) |
| 19 |
18
|
uneq2i |
|- ( ( R " U ) u. ( R " ( ( t+ ` R ) " U ) ) ) = ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) ) |
| 20 |
16 19
|
eqtri |
|- ( R " ( U u. ( ( t+ ` R ) " U ) ) ) = ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) ) |
| 21 |
15 20
|
eqtrdi |
|- ( ph -> ( R " A ) = ( ( R " U ) u. ( ( R o. ( t+ ` R ) ) " U ) ) ) |
| 22 |
14 21 2
|
3sstr4d |
|- ( ph -> ( R " A ) C_ A ) |