Metamath Proof Explorer


Theorem frege111

Description: If Y belongs to the R -sequence beginning with Z , then every result of an application of the procedure R to Y belongs to the R -sequence beginning with Z or precedes Z in the R -sequence. Proposition 111 of Frege1879 p. 75. (Contributed by RP, 7-Jul-2020) (Revised by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege111.z ZA
frege111.y YB
frege111.v VC
frege111.r RD
Assertion frege111 Zt+RIYYRV¬Vt+RZZt+RIV

Proof

Step Hyp Ref Expression
1 frege111.z ZA
2 frege111.y YB
3 frege111.v VC
4 frege111.r RD
5 1 2 3 4 frege108 Zt+RIYYRVZt+RIV
6 frege25 Zt+RIYYRVZt+RIVZt+RIYYRV¬Vt+RZZt+RIV
7 5 6 ax-mp Zt+RIYYRV¬Vt+RZZt+RIV