Metamath Proof Explorer


Theorem frege113

Description: Proposition 113 of Frege1879 p. 76. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege112.z Z V
Assertion frege113 Z t+ R I X ¬ Z t+ R X Z = X Z t+ R I X ¬ Z t+ R X X t+ R I Z

Proof

Step Hyp Ref Expression
1 frege112.z Z V
2 1 frege112 Z = X X t+ R I Z
3 frege7 Z = X X t+ R I Z Z t+ R I X ¬ Z t+ R X Z = X Z t+ R I X ¬ Z t+ R X X t+ R I Z
4 2 3 ax-mp Z t+ R I X ¬ Z t+ R X Z = X Z t+ R I X ¬ Z t+ R X X t+ R I Z