Description: Proposition 113 of Frege1879 p. 76. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frege112.z | |- Z e. V |
|
Assertion | frege113 | |- ( ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) ) -> ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege112.z | |- Z e. V |
|
2 | 1 | frege112 | |- ( Z = X -> X ( ( t+ ` R ) u. _I ) Z ) |
3 | frege7 | |- ( ( Z = X -> X ( ( t+ ` R ) u. _I ) Z ) -> ( ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) ) -> ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) ) ) |
|
4 | 2 3 | ax-mp | |- ( ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) ) -> ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) ) |