Metamath Proof Explorer


Theorem frege113

Description: Proposition 113 of Frege1879 p. 76. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege112.z
|- Z e. V
Assertion frege113
|- ( ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) ) -> ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) )

Proof

Step Hyp Ref Expression
1 frege112.z
 |-  Z e. V
2 1 frege112
 |-  ( Z = X -> X ( ( t+ ` R ) u. _I ) Z )
3 frege7
 |-  ( ( Z = X -> X ( ( t+ ` R ) u. _I ) Z ) -> ( ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) ) -> ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) ) )
4 2 3 ax-mp
 |-  ( ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) ) -> ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) )