Description: If X belongs to the R -sequence beginning with Z , then Z belongs to the R -sequence beginning with X or X follows Z in the R -sequence. Proposition 114 of Frege1879 p. 76. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frege114.x | |- X e. U |
|
frege114.z | |- Z e. V |
||
Assertion | frege114 | |- ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege114.x | |- X e. U |
|
2 | frege114.z | |- Z e. V |
|
3 | 1 | frege104 | |- ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) ) |
4 | 2 | frege113 | |- ( ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) ) -> ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) ) |
5 | 3 4 | ax-mp | |- ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) |