Metamath Proof Explorer


Theorem frege114

Description: If X belongs to the R -sequence beginning with Z , then Z belongs to the R -sequence beginning with X or X follows Z in the R -sequence. Proposition 114 of Frege1879 p. 76. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege114.x
|- X e. U
frege114.z
|- Z e. V
Assertion frege114
|- ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) )

Proof

Step Hyp Ref Expression
1 frege114.x
 |-  X e. U
2 frege114.z
 |-  Z e. V
3 1 frege104
 |-  ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) )
4 2 frege113
 |-  ( ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> Z = X ) ) -> ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) ) )
5 3 4 ax-mp
 |-  ( Z ( ( t+ ` R ) u. _I ) X -> ( -. Z ( t+ ` R ) X -> X ( ( t+ ` R ) u. _I ) Z ) )