Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Member of sequence
frege114
Metamath Proof Explorer
Description: If X belongs to the R -sequence beginning with Z , then
Z belongs to the R -sequence beginning with X or X
follows Z in the R -sequence. Proposition 114 of Frege1879
p. 76. (Contributed by RP , 7-Jul-2020)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
frege114.x
⊢ X ∈ U
frege114.z
⊢ Z ∈ V
Assertion
frege114
⊢ Z t+ ⁡ R ∪ I X → ¬ Z t+ ⁡ R X → X t+ ⁡ R ∪ I Z
Proof
Step
Hyp
Ref
Expression
1
frege114.x
⊢ X ∈ U
2
frege114.z
⊢ Z ∈ V
3
1
frege104
⊢ Z t+ ⁡ R ∪ I X → ¬ Z t+ ⁡ R X → Z = X
4
2
frege113
⊢ Z t+ ⁡ R ∪ I X → ¬ Z t+ ⁡ R X → Z = X → Z t+ ⁡ R ∪ I X → ¬ Z t+ ⁡ R X → X t+ ⁡ R ∪ I Z
5
3 4
ax-mp
⊢ Z t+ ⁡ R ∪ I X → ¬ Z t+ ⁡ R X → X t+ ⁡ R ∪ I Z