Metamath Proof Explorer


Theorem frege114

Description: If X belongs to the R -sequence beginning with Z , then Z belongs to the R -sequence beginning with X or X follows Z in the R -sequence. Proposition 114 of Frege1879 p. 76. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege114.x 𝑋𝑈
frege114.z 𝑍𝑉
Assertion frege114 ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) )

Proof

Step Hyp Ref Expression
1 frege114.x 𝑋𝑈
2 frege114.z 𝑍𝑉
3 1 frege104 ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋𝑍 = 𝑋 ) )
4 2 frege113 ( ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋𝑍 = 𝑋 ) ) → ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) ) )
5 3 4 ax-mp ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) )