Description: Proposition 113 of Frege1879 p. 76. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frege112.z | ⊢ 𝑍 ∈ 𝑉 | |
Assertion | frege113 | ⊢ ( ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋 → 𝑍 = 𝑋 ) ) → ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege112.z | ⊢ 𝑍 ∈ 𝑉 | |
2 | 1 | frege112 | ⊢ ( 𝑍 = 𝑋 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) |
3 | frege7 | ⊢ ( ( 𝑍 = 𝑋 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) → ( ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋 → 𝑍 = 𝑋 ) ) → ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) ) ) ) | |
4 | 2 3 | ax-mp | ⊢ ( ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋 → 𝑍 = 𝑋 ) ) → ( 𝑍 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑋 → ( ¬ 𝑍 ( t+ ‘ 𝑅 ) 𝑋 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑍 ) ) ) |