Metamath Proof Explorer


Theorem frege53c

Description: Proposition 53 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege53c [˙A/x]˙φA=B[˙B/x]˙φ

Proof

Step Hyp Ref Expression
1 ax-frege52c A=B[˙A/x]˙φ[˙B/x]˙φ
2 ax-frege8 A=B[˙A/x]˙φ[˙B/x]˙φ[˙A/x]˙φA=B[˙B/x]˙φ
3 1 2 ax-mp [˙A/x]˙φA=B[˙B/x]˙φ