Metamath Proof Explorer


Theorem frege79

Description: Distributed form of frege78 . Proposition 79 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 3-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege79.x XU
frege79.y YV
frege79.r RW
frege79.a AB
Assertion frege79 RhereditaryAaXRaaARhereditaryAXt+RYYA

Proof

Step Hyp Ref Expression
1 frege79.x XU
2 frege79.y YV
3 frege79.r RW
4 frege79.a AB
5 1 2 3 4 frege78 RhereditaryAaXRaaAXt+RYYA
6 ax-frege2 RhereditaryAaXRaaAXt+RYYARhereditaryAaXRaaARhereditaryAXt+RYYA
7 5 6 ax-mp RhereditaryAaXRaaARhereditaryAXt+RYYA