Metamath Proof Explorer


Theorem frege81

Description: If X has a property A that is hereditary in the R -sequence, and if Y follows X in the R -sequence, then Y has property A . This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege81.x XU
frege81.y YV
frege81.r RW
frege81.a AB
Assertion frege81 XARhereditaryAXt+RYYA

Proof

Step Hyp Ref Expression
1 frege81.x XU
2 frege81.y YV
3 frege81.r RW
4 frege81.a AB
5 vex aV
6 1 5 frege74 XARhereditaryAXRaaA
7 6 alrimdv XARhereditaryAaXRaaA
8 1 2 3 4 frege80 XARhereditaryAaXRaaAXARhereditaryAXt+RYYA
9 7 8 ax-mp XARhereditaryAXt+RYYA