Metamath Proof Explorer


Theorem frege87d

Description: If the images of both { A } and U are subsets of U and C follows A in the transitive closure of R and B follows C in R , then B is an element of U . Similar to Proposition 87 of Frege1879 p. 66. Compare with frege87 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege87d.r φ R V
frege87d.a φ A V
frege87d.b φ B V
frege87d.c φ C V
frege87d.ac φ A t+ R C
frege87d.cb φ C R B
frege87d.ss φ R A U
frege87d.he φ R U U
Assertion frege87d φ B U

Proof

Step Hyp Ref Expression
1 frege87d.r φ R V
2 frege87d.a φ A V
3 frege87d.b φ B V
4 frege87d.c φ C V
5 frege87d.ac φ A t+ R C
6 frege87d.cb φ C R B
7 frege87d.ss φ R A U
8 frege87d.he φ R U U
9 1 2 3 4 5 6 frege96d φ A t+ R B
10 1 2 3 9 8 7 frege77d φ B U