Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Additional statements on relations and subclasses
Adapted from Frege
frege87d
Metamath Proof Explorer
Description: If the images of both { A } and U are subsets of U and C
follows A in the transitive closure of R and B follows C
in R , then B is an element of U . Similar to Proposition
87 of Frege1879 p. 66. Compare with frege87 . (Contributed by RP , 15-Jul-2020)
Ref
Expression
Hypotheses
frege87d.r
⊢ φ → R ∈ V
frege87d.a
⊢ φ → A ∈ V
frege87d.b
⊢ φ → B ∈ V
frege87d.c
⊢ φ → C ∈ V
frege87d.ac
⊢ φ → A t+ ⁡ R C
frege87d.cb
⊢ φ → C R B
frege87d.ss
⊢ φ → R A ⊆ U
frege87d.he
⊢ φ → R U ⊆ U
Assertion
frege87d
⊢ φ → B ∈ U
Proof
Step
Hyp
Ref
Expression
1
frege87d.r
⊢ φ → R ∈ V
2
frege87d.a
⊢ φ → A ∈ V
3
frege87d.b
⊢ φ → B ∈ V
4
frege87d.c
⊢ φ → C ∈ V
5
frege87d.ac
⊢ φ → A t+ ⁡ R C
6
frege87d.cb
⊢ φ → C R B
7
frege87d.ss
⊢ φ → R A ⊆ U
8
frege87d.he
⊢ φ → R U ⊆ U
9
1 2 3 4 5 6
frege96d
⊢ φ → A t+ ⁡ R B
10
1 2 3 9 8 7
frege77d
⊢ φ → B ∈ U