Metamath Proof Explorer


Theorem frege77d

Description: If the images of both { A } and U are subsets of U and B follows A in the transitive closure of R , then B is an element of U . Similar to Proposition 77 of Frege1879 p. 62. Compare with frege77 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege77d.r φ R V
frege77d.a φ A V
frege77d.b φ B V
frege77d.ab φ A t+ R B
frege77d.he φ R U U
frege77d.ss φ R A U
Assertion frege77d φ B U

Proof

Step Hyp Ref Expression
1 frege77d.r φ R V
2 frege77d.a φ A V
3 frege77d.b φ B V
4 frege77d.ab φ A t+ R B
5 frege77d.he φ R U U
6 frege77d.ss φ R A U
7 imaundi R A U = R A R U
8 6 5 unssd φ R A R U U
9 7 8 eqsstrid φ R A U U
10 trclimalb2 R V R A U U t+ R A U
11 1 9 10 syl2anc φ t+ R A U
12 df-br A t+ R B A B t+ R
13 4 12 sylib φ A B t+ R
14 elimasng A V B V B t+ R A A B t+ R
15 2 3 14 syl2anc φ B t+ R A A B t+ R
16 13 15 mpbird φ B t+ R A
17 11 16 sseldd φ B U