Step |
Hyp |
Ref |
Expression |
1 |
|
frege77d.r |
|- ( ph -> R e. _V ) |
2 |
|
frege77d.a |
|- ( ph -> A e. _V ) |
3 |
|
frege77d.b |
|- ( ph -> B e. _V ) |
4 |
|
frege77d.ab |
|- ( ph -> A ( t+ ` R ) B ) |
5 |
|
frege77d.he |
|- ( ph -> ( R " U ) C_ U ) |
6 |
|
frege77d.ss |
|- ( ph -> ( R " { A } ) C_ U ) |
7 |
|
imaundi |
|- ( R " ( { A } u. U ) ) = ( ( R " { A } ) u. ( R " U ) ) |
8 |
6 5
|
unssd |
|- ( ph -> ( ( R " { A } ) u. ( R " U ) ) C_ U ) |
9 |
7 8
|
eqsstrid |
|- ( ph -> ( R " ( { A } u. U ) ) C_ U ) |
10 |
|
trclimalb2 |
|- ( ( R e. _V /\ ( R " ( { A } u. U ) ) C_ U ) -> ( ( t+ ` R ) " { A } ) C_ U ) |
11 |
1 9 10
|
syl2anc |
|- ( ph -> ( ( t+ ` R ) " { A } ) C_ U ) |
12 |
|
df-br |
|- ( A ( t+ ` R ) B <-> <. A , B >. e. ( t+ ` R ) ) |
13 |
4 12
|
sylib |
|- ( ph -> <. A , B >. e. ( t+ ` R ) ) |
14 |
|
elimasng |
|- ( ( A e. _V /\ B e. _V ) -> ( B e. ( ( t+ ` R ) " { A } ) <-> <. A , B >. e. ( t+ ` R ) ) ) |
15 |
2 3 14
|
syl2anc |
|- ( ph -> ( B e. ( ( t+ ` R ) " { A } ) <-> <. A , B >. e. ( t+ ` R ) ) ) |
16 |
13 15
|
mpbird |
|- ( ph -> B e. ( ( t+ ` R ) " { A } ) ) |
17 |
11 16
|
sseldd |
|- ( ph -> B e. U ) |