Metamath Proof Explorer


Theorem frege77d

Description: If the images of both { A } and U are subsets of U and B follows A in the transitive closure of R , then B is an element of U . Similar to Proposition 77 of Frege1879 p. 62. Compare with frege77 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege77d.r
|- ( ph -> R e. _V )
frege77d.a
|- ( ph -> A e. _V )
frege77d.b
|- ( ph -> B e. _V )
frege77d.ab
|- ( ph -> A ( t+ ` R ) B )
frege77d.he
|- ( ph -> ( R " U ) C_ U )
frege77d.ss
|- ( ph -> ( R " { A } ) C_ U )
Assertion frege77d
|- ( ph -> B e. U )

Proof

Step Hyp Ref Expression
1 frege77d.r
 |-  ( ph -> R e. _V )
2 frege77d.a
 |-  ( ph -> A e. _V )
3 frege77d.b
 |-  ( ph -> B e. _V )
4 frege77d.ab
 |-  ( ph -> A ( t+ ` R ) B )
5 frege77d.he
 |-  ( ph -> ( R " U ) C_ U )
6 frege77d.ss
 |-  ( ph -> ( R " { A } ) C_ U )
7 imaundi
 |-  ( R " ( { A } u. U ) ) = ( ( R " { A } ) u. ( R " U ) )
8 6 5 unssd
 |-  ( ph -> ( ( R " { A } ) u. ( R " U ) ) C_ U )
9 7 8 eqsstrid
 |-  ( ph -> ( R " ( { A } u. U ) ) C_ U )
10 trclimalb2
 |-  ( ( R e. _V /\ ( R " ( { A } u. U ) ) C_ U ) -> ( ( t+ ` R ) " { A } ) C_ U )
11 1 9 10 syl2anc
 |-  ( ph -> ( ( t+ ` R ) " { A } ) C_ U )
12 df-br
 |-  ( A ( t+ ` R ) B <-> <. A , B >. e. ( t+ ` R ) )
13 4 12 sylib
 |-  ( ph -> <. A , B >. e. ( t+ ` R ) )
14 elimasng
 |-  ( ( A e. _V /\ B e. _V ) -> ( B e. ( ( t+ ` R ) " { A } ) <-> <. A , B >. e. ( t+ ` R ) ) )
15 2 3 14 syl2anc
 |-  ( ph -> ( B e. ( ( t+ ` R ) " { A } ) <-> <. A , B >. e. ( t+ ` R ) ) )
16 13 15 mpbird
 |-  ( ph -> B e. ( ( t+ ` R ) " { A } ) )
17 11 16 sseldd
 |-  ( ph -> B e. U )