Metamath Proof Explorer


Theorem frege81d

Description: If the image of U is a subset U , A is an element of U and B follows A in the transitive closure of R , then B is an element of U . Similar to Proposition 81 of Frege1879 p. 63. Compare with frege81 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege81d.r
|- ( ph -> R e. _V )
frege81d.a
|- ( ph -> A e. U )
frege81d.b
|- ( ph -> B e. _V )
frege81d.ab
|- ( ph -> A ( t+ ` R ) B )
frege81d.he
|- ( ph -> ( R " U ) C_ U )
Assertion frege81d
|- ( ph -> B e. U )

Proof

Step Hyp Ref Expression
1 frege81d.r
 |-  ( ph -> R e. _V )
2 frege81d.a
 |-  ( ph -> A e. U )
3 frege81d.b
 |-  ( ph -> B e. _V )
4 frege81d.ab
 |-  ( ph -> A ( t+ ` R ) B )
5 frege81d.he
 |-  ( ph -> ( R " U ) C_ U )
6 2 elexd
 |-  ( ph -> A e. _V )
7 2 snssd
 |-  ( ph -> { A } C_ U )
8 imass2
 |-  ( { A } C_ U -> ( R " { A } ) C_ ( R " U ) )
9 7 8 syl
 |-  ( ph -> ( R " { A } ) C_ ( R " U ) )
10 9 5 sstrd
 |-  ( ph -> ( R " { A } ) C_ U )
11 1 6 3 4 5 10 frege77d
 |-  ( ph -> B e. U )