Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Additional statements on relations and subclasses
Adapted from Frege
frege81d
Metamath Proof Explorer
Description: If the image of U is a subset U , A is an element of U
and B follows A in the transitive closure of R , then B
is an element of U . Similar to Proposition 81 of Frege1879
p. 63. Compare with frege81 . (Contributed by RP , 15-Jul-2020)
Ref
Expression
Hypotheses
frege81d.r
|- ( ph -> R e. _V )
frege81d.a
|- ( ph -> A e. U )
frege81d.b
|- ( ph -> B e. _V )
frege81d.ab
|- ( ph -> A ( t+ ` R ) B )
frege81d.he
|- ( ph -> ( R " U ) C_ U )
Assertion
frege81d
|- ( ph -> B e. U )
Proof
Step
Hyp
Ref
Expression
1
frege81d.r
|- ( ph -> R e. _V )
2
frege81d.a
|- ( ph -> A e. U )
3
frege81d.b
|- ( ph -> B e. _V )
4
frege81d.ab
|- ( ph -> A ( t+ ` R ) B )
5
frege81d.he
|- ( ph -> ( R " U ) C_ U )
6
2
elexd
|- ( ph -> A e. _V )
7
2
snssd
|- ( ph -> { A } C_ U )
8
imass2
|- ( { A } C_ U -> ( R " { A } ) C_ ( R " U ) )
9
7 8
syl
|- ( ph -> ( R " { A } ) C_ ( R " U ) )
10
9 5
sstrd
|- ( ph -> ( R " { A } ) C_ U )
11
1 6 3 4 5 10
frege77d
|- ( ph -> B e. U )