Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Additional statements on relations and subclasses
Adapted from Frege
frege81d
Metamath Proof Explorer
Description: If the image of U is a subset U , A is an element of U
and B follows A in the transitive closure of R , then B
is an element of U . Similar to Proposition 81 of Frege1879
p. 63. Compare with frege81 . (Contributed by RP , 15-Jul-2020)
Ref
Expression
Hypotheses
frege81d.r
⊢ ( 𝜑 → 𝑅 ∈ V )
frege81d.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 )
frege81d.b
⊢ ( 𝜑 → 𝐵 ∈ V )
frege81d.ab
⊢ ( 𝜑 → 𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
frege81d.he
⊢ ( 𝜑 → ( 𝑅 “ 𝑈 ) ⊆ 𝑈 )
Assertion
frege81d
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 )
Proof
Step
Hyp
Ref
Expression
1
frege81d.r
⊢ ( 𝜑 → 𝑅 ∈ V )
2
frege81d.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 )
3
frege81d.b
⊢ ( 𝜑 → 𝐵 ∈ V )
4
frege81d.ab
⊢ ( 𝜑 → 𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
5
frege81d.he
⊢ ( 𝜑 → ( 𝑅 “ 𝑈 ) ⊆ 𝑈 )
6
2
elexd
⊢ ( 𝜑 → 𝐴 ∈ V )
7
2
snssd
⊢ ( 𝜑 → { 𝐴 } ⊆ 𝑈 )
8
imass2
⊢ ( { 𝐴 } ⊆ 𝑈 → ( 𝑅 “ { 𝐴 } ) ⊆ ( 𝑅 “ 𝑈 ) )
9
7 8
syl
⊢ ( 𝜑 → ( 𝑅 “ { 𝐴 } ) ⊆ ( 𝑅 “ 𝑈 ) )
10
9 5
sstrd
⊢ ( 𝜑 → ( 𝑅 “ { 𝐴 } ) ⊆ 𝑈 )
11
1 6 3 4 5 10
frege77d
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 )