Metamath Proof Explorer


Theorem frege81d

Description: If the image of U is a subset U , A is an element of U and B follows A in the transitive closure of R , then B is an element of U . Similar to Proposition 81 of Frege1879 p. 63. Compare with frege81 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege81d.r ( 𝜑𝑅 ∈ V )
frege81d.a ( 𝜑𝐴𝑈 )
frege81d.b ( 𝜑𝐵 ∈ V )
frege81d.ab ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
frege81d.he ( 𝜑 → ( 𝑅𝑈 ) ⊆ 𝑈 )
Assertion frege81d ( 𝜑𝐵𝑈 )

Proof

Step Hyp Ref Expression
1 frege81d.r ( 𝜑𝑅 ∈ V )
2 frege81d.a ( 𝜑𝐴𝑈 )
3 frege81d.b ( 𝜑𝐵 ∈ V )
4 frege81d.ab ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
5 frege81d.he ( 𝜑 → ( 𝑅𝑈 ) ⊆ 𝑈 )
6 2 elexd ( 𝜑𝐴 ∈ V )
7 2 snssd ( 𝜑 → { 𝐴 } ⊆ 𝑈 )
8 imass2 ( { 𝐴 } ⊆ 𝑈 → ( 𝑅 “ { 𝐴 } ) ⊆ ( 𝑅𝑈 ) )
9 7 8 syl ( 𝜑 → ( 𝑅 “ { 𝐴 } ) ⊆ ( 𝑅𝑈 ) )
10 9 5 sstrd ( 𝜑 → ( 𝑅 “ { 𝐴 } ) ⊆ 𝑈 )
11 1 6 3 4 5 10 frege77d ( 𝜑𝐵𝑈 )