Metamath Proof Explorer


Theorem frege83d

Description: If the image of the union of U and V is a subset of the union of U and V , A is an element of U and B follows A in the transitive closure of R , then B is an element of the union of U and V . Similar to Proposition 83 of Frege1879 p. 65. Compare with frege83 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege83d.r ( 𝜑𝑅 ∈ V )
frege83d.a ( 𝜑𝐴𝑈 )
frege83d.b ( 𝜑𝐵 ∈ V )
frege83d.ab ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
frege83d.he ( 𝜑 → ( 𝑅 “ ( 𝑈𝑉 ) ) ⊆ ( 𝑈𝑉 ) )
Assertion frege83d ( 𝜑𝐵 ∈ ( 𝑈𝑉 ) )

Proof

Step Hyp Ref Expression
1 frege83d.r ( 𝜑𝑅 ∈ V )
2 frege83d.a ( 𝜑𝐴𝑈 )
3 frege83d.b ( 𝜑𝐵 ∈ V )
4 frege83d.ab ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
5 frege83d.he ( 𝜑 → ( 𝑅 “ ( 𝑈𝑉 ) ) ⊆ ( 𝑈𝑉 ) )
6 ssun1 𝑈 ⊆ ( 𝑈𝑉 )
7 6 2 sselid ( 𝜑𝐴 ∈ ( 𝑈𝑉 ) )
8 1 7 3 4 5 frege81d ( 𝜑𝐵 ∈ ( 𝑈𝑉 ) )