Metamath Proof Explorer


Theorem frege83d

Description: If the image of the union of U and V is a subset of the union of U and V , A is an element of U and B follows A in the transitive closure of R , then B is an element of the union of U and V . Similar to Proposition 83 of Frege1879 p. 65. Compare with frege83 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege83d.r
|- ( ph -> R e. _V )
frege83d.a
|- ( ph -> A e. U )
frege83d.b
|- ( ph -> B e. _V )
frege83d.ab
|- ( ph -> A ( t+ ` R ) B )
frege83d.he
|- ( ph -> ( R " ( U u. V ) ) C_ ( U u. V ) )
Assertion frege83d
|- ( ph -> B e. ( U u. V ) )

Proof

Step Hyp Ref Expression
1 frege83d.r
 |-  ( ph -> R e. _V )
2 frege83d.a
 |-  ( ph -> A e. U )
3 frege83d.b
 |-  ( ph -> B e. _V )
4 frege83d.ab
 |-  ( ph -> A ( t+ ` R ) B )
5 frege83d.he
 |-  ( ph -> ( R " ( U u. V ) ) C_ ( U u. V ) )
6 ssun1
 |-  U C_ ( U u. V )
7 6 2 sselid
 |-  ( ph -> A e. ( U u. V ) )
8 1 7 3 4 5 frege81d
 |-  ( ph -> B e. ( U u. V ) )