Step |
Hyp |
Ref |
Expression |
1 |
|
frege96d.r |
|- ( ph -> R e. _V ) |
2 |
|
frege96d.a |
|- ( ph -> A e. _V ) |
3 |
|
frege96d.b |
|- ( ph -> B e. _V ) |
4 |
|
frege96d.c |
|- ( ph -> C e. _V ) |
5 |
|
frege96d.ac |
|- ( ph -> A ( t+ ` R ) C ) |
6 |
|
frege96d.cb |
|- ( ph -> C R B ) |
7 |
|
brcogw |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ ( A ( t+ ` R ) C /\ C R B ) ) -> A ( R o. ( t+ ` R ) ) B ) |
8 |
2 3 4 5 6 7
|
syl32anc |
|- ( ph -> A ( R o. ( t+ ` R ) ) B ) |
9 |
|
trclfvlb |
|- ( R e. _V -> R C_ ( t+ ` R ) ) |
10 |
|
coss1 |
|- ( R C_ ( t+ ` R ) -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) ) |
11 |
1 9 10
|
3syl |
|- ( ph -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) ) |
12 |
|
trclfvcotrg |
|- ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) |
13 |
11 12
|
sstrdi |
|- ( ph -> ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) ) |
14 |
13
|
ssbrd |
|- ( ph -> ( A ( R o. ( t+ ` R ) ) B -> A ( t+ ` R ) B ) ) |
15 |
8 14
|
mpd |
|- ( ph -> A ( t+ ` R ) B ) |