| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege96d.r |
|- ( ph -> R e. _V ) |
| 2 |
|
frege96d.a |
|- ( ph -> A e. _V ) |
| 3 |
|
frege96d.b |
|- ( ph -> B e. _V ) |
| 4 |
|
frege96d.c |
|- ( ph -> C e. _V ) |
| 5 |
|
frege96d.ac |
|- ( ph -> A ( t+ ` R ) C ) |
| 6 |
|
frege96d.cb |
|- ( ph -> C R B ) |
| 7 |
|
brcogw |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ ( A ( t+ ` R ) C /\ C R B ) ) -> A ( R o. ( t+ ` R ) ) B ) |
| 8 |
2 3 4 5 6 7
|
syl32anc |
|- ( ph -> A ( R o. ( t+ ` R ) ) B ) |
| 9 |
|
trclfvlb |
|- ( R e. _V -> R C_ ( t+ ` R ) ) |
| 10 |
|
coss1 |
|- ( R C_ ( t+ ` R ) -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) ) |
| 11 |
1 9 10
|
3syl |
|- ( ph -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) ) |
| 12 |
|
trclfvcotrg |
|- ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) |
| 13 |
11 12
|
sstrdi |
|- ( ph -> ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) ) |
| 14 |
13
|
ssbrd |
|- ( ph -> ( A ( R o. ( t+ ` R ) ) B -> A ( t+ ` R ) B ) ) |
| 15 |
8 14
|
mpd |
|- ( ph -> A ( t+ ` R ) B ) |