Metamath Proof Explorer


Theorem frege96d

Description: If C follows A in the transitive closure of R and B follows C in R , then B follows A in the transitive closure of R . Similar to Proposition 96 of Frege1879 p. 71. Compare with frege96 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege96d.r
|- ( ph -> R e. _V )
frege96d.a
|- ( ph -> A e. _V )
frege96d.b
|- ( ph -> B e. _V )
frege96d.c
|- ( ph -> C e. _V )
frege96d.ac
|- ( ph -> A ( t+ ` R ) C )
frege96d.cb
|- ( ph -> C R B )
Assertion frege96d
|- ( ph -> A ( t+ ` R ) B )

Proof

Step Hyp Ref Expression
1 frege96d.r
 |-  ( ph -> R e. _V )
2 frege96d.a
 |-  ( ph -> A e. _V )
3 frege96d.b
 |-  ( ph -> B e. _V )
4 frege96d.c
 |-  ( ph -> C e. _V )
5 frege96d.ac
 |-  ( ph -> A ( t+ ` R ) C )
6 frege96d.cb
 |-  ( ph -> C R B )
7 brcogw
 |-  ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ ( A ( t+ ` R ) C /\ C R B ) ) -> A ( R o. ( t+ ` R ) ) B )
8 2 3 4 5 6 7 syl32anc
 |-  ( ph -> A ( R o. ( t+ ` R ) ) B )
9 trclfvlb
 |-  ( R e. _V -> R C_ ( t+ ` R ) )
10 coss1
 |-  ( R C_ ( t+ ` R ) -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) )
11 1 9 10 3syl
 |-  ( ph -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) )
12 trclfvcotrg
 |-  ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R )
13 11 12 sstrdi
 |-  ( ph -> ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) )
14 13 ssbrd
 |-  ( ph -> ( A ( R o. ( t+ ` R ) ) B -> A ( t+ ` R ) B ) )
15 8 14 mpd
 |-  ( ph -> A ( t+ ` R ) B )