Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Additional statements on relations and subclasses
Adapted from Frege
frege87d
Metamath Proof Explorer
Description: If the images of both { A } and U are subsets of U and C
follows A in the transitive closure of R and B follows C
in R , then B is an element of U . Similar to Proposition
87 of Frege1879 p. 66. Compare with frege87 . (Contributed by RP , 15-Jul-2020)
Ref
Expression
Hypotheses
frege87d.r
⊢ ( 𝜑 → 𝑅 ∈ V )
frege87d.a
⊢ ( 𝜑 → 𝐴 ∈ V )
frege87d.b
⊢ ( 𝜑 → 𝐵 ∈ V )
frege87d.c
⊢ ( 𝜑 → 𝐶 ∈ V )
frege87d.ac
⊢ ( 𝜑 → 𝐴 ( t+ ‘ 𝑅 ) 𝐶 )
frege87d.cb
⊢ ( 𝜑 → 𝐶 𝑅 𝐵 )
frege87d.ss
⊢ ( 𝜑 → ( 𝑅 “ { 𝐴 } ) ⊆ 𝑈 )
frege87d.he
⊢ ( 𝜑 → ( 𝑅 “ 𝑈 ) ⊆ 𝑈 )
Assertion
frege87d
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 )
Proof
Step
Hyp
Ref
Expression
1
frege87d.r
⊢ ( 𝜑 → 𝑅 ∈ V )
2
frege87d.a
⊢ ( 𝜑 → 𝐴 ∈ V )
3
frege87d.b
⊢ ( 𝜑 → 𝐵 ∈ V )
4
frege87d.c
⊢ ( 𝜑 → 𝐶 ∈ V )
5
frege87d.ac
⊢ ( 𝜑 → 𝐴 ( t+ ‘ 𝑅 ) 𝐶 )
6
frege87d.cb
⊢ ( 𝜑 → 𝐶 𝑅 𝐵 )
7
frege87d.ss
⊢ ( 𝜑 → ( 𝑅 “ { 𝐴 } ) ⊆ 𝑈 )
8
frege87d.he
⊢ ( 𝜑 → ( 𝑅 “ 𝑈 ) ⊆ 𝑈 )
9
1 2 3 4 5 6
frege96d
⊢ ( 𝜑 → 𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
10
1 2 3 9 8 7
frege77d
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 )