Metamath Proof Explorer


Theorem frege87d

Description: If the images of both { A } and U are subsets of U and C follows A in the transitive closure of R and B follows C in R , then B is an element of U . Similar to Proposition 87 of Frege1879 p. 66. Compare with frege87 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege87d.r ( 𝜑𝑅 ∈ V )
frege87d.a ( 𝜑𝐴 ∈ V )
frege87d.b ( 𝜑𝐵 ∈ V )
frege87d.c ( 𝜑𝐶 ∈ V )
frege87d.ac ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 )
frege87d.cb ( 𝜑𝐶 𝑅 𝐵 )
frege87d.ss ( 𝜑 → ( 𝑅 “ { 𝐴 } ) ⊆ 𝑈 )
frege87d.he ( 𝜑 → ( 𝑅𝑈 ) ⊆ 𝑈 )
Assertion frege87d ( 𝜑𝐵𝑈 )

Proof

Step Hyp Ref Expression
1 frege87d.r ( 𝜑𝑅 ∈ V )
2 frege87d.a ( 𝜑𝐴 ∈ V )
3 frege87d.b ( 𝜑𝐵 ∈ V )
4 frege87d.c ( 𝜑𝐶 ∈ V )
5 frege87d.ac ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 )
6 frege87d.cb ( 𝜑𝐶 𝑅 𝐵 )
7 frege87d.ss ( 𝜑 → ( 𝑅 “ { 𝐴 } ) ⊆ 𝑈 )
8 frege87d.he ( 𝜑 → ( 𝑅𝑈 ) ⊆ 𝑈 )
9 1 2 3 4 5 6 frege96d ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
10 1 2 3 9 8 7 frege77d ( 𝜑𝐵𝑈 )