Metamath Proof Explorer


Theorem frege91d

Description: If B follows A in R then B follows A in the transitive closure of R . Similar to Proposition 91 of Frege1879 p. 68. Comparw with frege91 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege91d.r ( 𝜑𝑅 ∈ V )
frege91d.ac ( 𝜑𝐴 𝑅 𝐵 )
Assertion frege91d ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 frege91d.r ( 𝜑𝑅 ∈ V )
2 frege91d.ac ( 𝜑𝐴 𝑅 𝐵 )
3 trclfvlb ( 𝑅 ∈ V → 𝑅 ⊆ ( t+ ‘ 𝑅 ) )
4 1 3 syl ( 𝜑𝑅 ⊆ ( t+ ‘ 𝑅 ) )
5 4 ssbrd ( 𝜑 → ( 𝐴 𝑅 𝐵𝐴 ( t+ ‘ 𝑅 ) 𝐵 ) )
6 2 5 mpd ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )