Metamath Proof Explorer


Theorem frege91d

Description: If B follows A in R then B follows A in the transitive closure of R . Similar to Proposition 91 of Frege1879 p. 68. Comparw with frege91 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege91d.r
|- ( ph -> R e. _V )
frege91d.ac
|- ( ph -> A R B )
Assertion frege91d
|- ( ph -> A ( t+ ` R ) B )

Proof

Step Hyp Ref Expression
1 frege91d.r
 |-  ( ph -> R e. _V )
2 frege91d.ac
 |-  ( ph -> A R B )
3 trclfvlb
 |-  ( R e. _V -> R C_ ( t+ ` R ) )
4 1 3 syl
 |-  ( ph -> R C_ ( t+ ` R ) )
5 4 ssbrd
 |-  ( ph -> ( A R B -> A ( t+ ` R ) B ) )
6 2 5 mpd
 |-  ( ph -> A ( t+ ` R ) B )