Metamath Proof Explorer


Theorem frege97d

Description: If A contains all elements after those in U in the transitive closure of R , then the image under R of A is a subclass of A . Similar to Proposition 97 of Frege1879 p. 71. Compare with frege97 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege97d.r
|- ( ph -> R e. _V )
frege97d.a
|- ( ph -> A = ( ( t+ ` R ) " U ) )
Assertion frege97d
|- ( ph -> ( R " A ) C_ A )

Proof

Step Hyp Ref Expression
1 frege97d.r
 |-  ( ph -> R e. _V )
2 frege97d.a
 |-  ( ph -> A = ( ( t+ ` R ) " U ) )
3 trclfvlb
 |-  ( R e. _V -> R C_ ( t+ ` R ) )
4 coss1
 |-  ( R C_ ( t+ ` R ) -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) )
5 1 3 4 3syl
 |-  ( ph -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) )
6 trclfvcotrg
 |-  ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R )
7 5 6 sstrdi
 |-  ( ph -> ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) )
8 imass1
 |-  ( ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) -> ( ( R o. ( t+ ` R ) ) " U ) C_ ( ( t+ ` R ) " U ) )
9 7 8 syl
 |-  ( ph -> ( ( R o. ( t+ ` R ) ) " U ) C_ ( ( t+ ` R ) " U ) )
10 2 imaeq2d
 |-  ( ph -> ( R " A ) = ( R " ( ( t+ ` R ) " U ) ) )
11 imaco
 |-  ( ( R o. ( t+ ` R ) ) " U ) = ( R " ( ( t+ ` R ) " U ) )
12 10 11 eqtr4di
 |-  ( ph -> ( R " A ) = ( ( R o. ( t+ ` R ) ) " U ) )
13 9 12 2 3sstr4d
 |-  ( ph -> ( R " A ) C_ A )