| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege97d.r |
|- ( ph -> R e. _V ) |
| 2 |
|
frege97d.a |
|- ( ph -> A = ( ( t+ ` R ) " U ) ) |
| 3 |
|
trclfvlb |
|- ( R e. _V -> R C_ ( t+ ` R ) ) |
| 4 |
|
coss1 |
|- ( R C_ ( t+ ` R ) -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) ) |
| 5 |
1 3 4
|
3syl |
|- ( ph -> ( R o. ( t+ ` R ) ) C_ ( ( t+ ` R ) o. ( t+ ` R ) ) ) |
| 6 |
|
trclfvcotrg |
|- ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) |
| 7 |
5 6
|
sstrdi |
|- ( ph -> ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) ) |
| 8 |
|
imass1 |
|- ( ( R o. ( t+ ` R ) ) C_ ( t+ ` R ) -> ( ( R o. ( t+ ` R ) ) " U ) C_ ( ( t+ ` R ) " U ) ) |
| 9 |
7 8
|
syl |
|- ( ph -> ( ( R o. ( t+ ` R ) ) " U ) C_ ( ( t+ ` R ) " U ) ) |
| 10 |
2
|
imaeq2d |
|- ( ph -> ( R " A ) = ( R " ( ( t+ ` R ) " U ) ) ) |
| 11 |
|
imaco |
|- ( ( R o. ( t+ ` R ) ) " U ) = ( R " ( ( t+ ` R ) " U ) ) |
| 12 |
10 11
|
eqtr4di |
|- ( ph -> ( R " A ) = ( ( R o. ( t+ ` R ) ) " U ) ) |
| 13 |
9 12 2
|
3sstr4d |
|- ( ph -> ( R " A ) C_ A ) |