Metamath Proof Explorer


Theorem frege98d

Description: If C follows A and B follows C in the transitive closure of R , then B follows A in the transitive closure of R . Similar to Proposition 98 of Frege1879 p. 71. Compare with frege98 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege98d.a
|- ( ph -> A e. _V )
frege98d.b
|- ( ph -> B e. _V )
frege98d.c
|- ( ph -> C e. _V )
frege98d.ac
|- ( ph -> A ( t+ ` R ) C )
frege98d.cb
|- ( ph -> C ( t+ ` R ) B )
Assertion frege98d
|- ( ph -> A ( t+ ` R ) B )

Proof

Step Hyp Ref Expression
1 frege98d.a
 |-  ( ph -> A e. _V )
2 frege98d.b
 |-  ( ph -> B e. _V )
3 frege98d.c
 |-  ( ph -> C e. _V )
4 frege98d.ac
 |-  ( ph -> A ( t+ ` R ) C )
5 frege98d.cb
 |-  ( ph -> C ( t+ ` R ) B )
6 brcogw
 |-  ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ ( A ( t+ ` R ) C /\ C ( t+ ` R ) B ) ) -> A ( ( t+ ` R ) o. ( t+ ` R ) ) B )
7 1 2 3 4 5 6 syl32anc
 |-  ( ph -> A ( ( t+ ` R ) o. ( t+ ` R ) ) B )
8 trclfvcotrg
 |-  ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R )
9 8 a1i
 |-  ( ph -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) )
10 9 ssbrd
 |-  ( ph -> ( A ( ( t+ ` R ) o. ( t+ ` R ) ) B -> A ( t+ ` R ) B ) )
11 7 10 mpd
 |-  ( ph -> A ( t+ ` R ) B )