| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege98d.a |
|- ( ph -> A e. _V ) |
| 2 |
|
frege98d.b |
|- ( ph -> B e. _V ) |
| 3 |
|
frege98d.c |
|- ( ph -> C e. _V ) |
| 4 |
|
frege98d.ac |
|- ( ph -> A ( t+ ` R ) C ) |
| 5 |
|
frege98d.cb |
|- ( ph -> C ( t+ ` R ) B ) |
| 6 |
|
brcogw |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ ( A ( t+ ` R ) C /\ C ( t+ ` R ) B ) ) -> A ( ( t+ ` R ) o. ( t+ ` R ) ) B ) |
| 7 |
1 2 3 4 5 6
|
syl32anc |
|- ( ph -> A ( ( t+ ` R ) o. ( t+ ` R ) ) B ) |
| 8 |
|
trclfvcotrg |
|- ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) |
| 9 |
8
|
a1i |
|- ( ph -> ( ( t+ ` R ) o. ( t+ ` R ) ) C_ ( t+ ` R ) ) |
| 10 |
9
|
ssbrd |
|- ( ph -> ( A ( ( t+ ` R ) o. ( t+ ` R ) ) B -> A ( t+ ` R ) B ) ) |
| 11 |
7 10
|
mpd |
|- ( ph -> A ( t+ ` R ) B ) |