Step |
Hyp |
Ref |
Expression |
1 |
|
frege102d.r |
|- ( ph -> R e. _V ) |
2 |
|
frege102d.a |
|- ( ph -> A e. _V ) |
3 |
|
frege102d.b |
|- ( ph -> B e. _V ) |
4 |
|
frege102d.c |
|- ( ph -> C e. _V ) |
5 |
|
frege102d.ac |
|- ( ph -> ( A ( t+ ` R ) C \/ A = C ) ) |
6 |
|
frege102d.cb |
|- ( ph -> C R B ) |
7 |
1
|
adantr |
|- ( ( ph /\ A ( t+ ` R ) C ) -> R e. _V ) |
8 |
2
|
adantr |
|- ( ( ph /\ A ( t+ ` R ) C ) -> A e. _V ) |
9 |
3
|
adantr |
|- ( ( ph /\ A ( t+ ` R ) C ) -> B e. _V ) |
10 |
4
|
adantr |
|- ( ( ph /\ A ( t+ ` R ) C ) -> C e. _V ) |
11 |
|
simpr |
|- ( ( ph /\ A ( t+ ` R ) C ) -> A ( t+ ` R ) C ) |
12 |
6
|
adantr |
|- ( ( ph /\ A ( t+ ` R ) C ) -> C R B ) |
13 |
7 8 9 10 11 12
|
frege96d |
|- ( ( ph /\ A ( t+ ` R ) C ) -> A ( t+ ` R ) B ) |
14 |
1
|
adantr |
|- ( ( ph /\ A = C ) -> R e. _V ) |
15 |
|
simpr |
|- ( ( ph /\ A = C ) -> A = C ) |
16 |
6
|
adantr |
|- ( ( ph /\ A = C ) -> C R B ) |
17 |
15 16
|
eqbrtrd |
|- ( ( ph /\ A = C ) -> A R B ) |
18 |
14 17
|
frege91d |
|- ( ( ph /\ A = C ) -> A ( t+ ` R ) B ) |
19 |
13 18 5
|
mpjaodan |
|- ( ph -> A ( t+ ` R ) B ) |