Metamath Proof Explorer


Theorem frege102d

Description: If either A and C are the same or C follows A in the transitive closure of Rand B is the successor to C , then B follows A in the transitive closure of R . Similar to Proposition 102 of Frege1879 p. 72. Compare with frege102 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege102d.r
|- ( ph -> R e. _V )
frege102d.a
|- ( ph -> A e. _V )
frege102d.b
|- ( ph -> B e. _V )
frege102d.c
|- ( ph -> C e. _V )
frege102d.ac
|- ( ph -> ( A ( t+ ` R ) C \/ A = C ) )
frege102d.cb
|- ( ph -> C R B )
Assertion frege102d
|- ( ph -> A ( t+ ` R ) B )

Proof

Step Hyp Ref Expression
1 frege102d.r
 |-  ( ph -> R e. _V )
2 frege102d.a
 |-  ( ph -> A e. _V )
3 frege102d.b
 |-  ( ph -> B e. _V )
4 frege102d.c
 |-  ( ph -> C e. _V )
5 frege102d.ac
 |-  ( ph -> ( A ( t+ ` R ) C \/ A = C ) )
6 frege102d.cb
 |-  ( ph -> C R B )
7 1 adantr
 |-  ( ( ph /\ A ( t+ ` R ) C ) -> R e. _V )
8 2 adantr
 |-  ( ( ph /\ A ( t+ ` R ) C ) -> A e. _V )
9 3 adantr
 |-  ( ( ph /\ A ( t+ ` R ) C ) -> B e. _V )
10 4 adantr
 |-  ( ( ph /\ A ( t+ ` R ) C ) -> C e. _V )
11 simpr
 |-  ( ( ph /\ A ( t+ ` R ) C ) -> A ( t+ ` R ) C )
12 6 adantr
 |-  ( ( ph /\ A ( t+ ` R ) C ) -> C R B )
13 7 8 9 10 11 12 frege96d
 |-  ( ( ph /\ A ( t+ ` R ) C ) -> A ( t+ ` R ) B )
14 1 adantr
 |-  ( ( ph /\ A = C ) -> R e. _V )
15 simpr
 |-  ( ( ph /\ A = C ) -> A = C )
16 6 adantr
 |-  ( ( ph /\ A = C ) -> C R B )
17 15 16 eqbrtrd
 |-  ( ( ph /\ A = C ) -> A R B )
18 14 17 frege91d
 |-  ( ( ph /\ A = C ) -> A ( t+ ` R ) B )
19 13 18 5 mpjaodan
 |-  ( ph -> A ( t+ ` R ) B )