| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege102d.r |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 2 |
|
frege102d.a |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 3 |
|
frege102d.b |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 4 |
|
frege102d.c |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 5 |
|
frege102d.ac |
⊢ ( 𝜑 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐶 ∨ 𝐴 = 𝐶 ) ) |
| 6 |
|
frege102d.cb |
⊢ ( 𝜑 → 𝐶 𝑅 𝐵 ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝑅 ∈ V ) |
| 8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐴 ∈ V ) |
| 9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐵 ∈ V ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐶 ∈ V ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) |
| 12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐶 𝑅 𝐵 ) |
| 13 |
7 8 9 10 11 12
|
frege96d |
⊢ ( ( 𝜑 ∧ 𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝑅 ∈ V ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 = 𝐶 ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐶 𝑅 𝐵 ) |
| 17 |
15 16
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 𝑅 𝐵 ) |
| 18 |
14 17
|
frege91d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ) |
| 19 |
13 18 5
|
mpjaodan |
⊢ ( 𝜑 → 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ) |