Metamath Proof Explorer


Theorem frege102d

Description: If either A and C are the same or C follows A in the transitive closure of Rand B is the successor to C , then B follows A in the transitive closure of R . Similar to Proposition 102 of Frege1879 p. 72. Compare with frege102 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege102d.r ( 𝜑𝑅 ∈ V )
frege102d.a ( 𝜑𝐴 ∈ V )
frege102d.b ( 𝜑𝐵 ∈ V )
frege102d.c ( 𝜑𝐶 ∈ V )
frege102d.ac ( 𝜑 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐶𝐴 = 𝐶 ) )
frege102d.cb ( 𝜑𝐶 𝑅 𝐵 )
Assertion frege102d ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 frege102d.r ( 𝜑𝑅 ∈ V )
2 frege102d.a ( 𝜑𝐴 ∈ V )
3 frege102d.b ( 𝜑𝐵 ∈ V )
4 frege102d.c ( 𝜑𝐶 ∈ V )
5 frege102d.ac ( 𝜑 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐶𝐴 = 𝐶 ) )
6 frege102d.cb ( 𝜑𝐶 𝑅 𝐵 )
7 1 adantr ( ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝑅 ∈ V )
8 2 adantr ( ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐴 ∈ V )
9 3 adantr ( ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐵 ∈ V )
10 4 adantr ( ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐶 ∈ V )
11 simpr ( ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐴 ( t+ ‘ 𝑅 ) 𝐶 )
12 6 adantr ( ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐶 𝑅 𝐵 )
13 7 8 9 10 11 12 frege96d ( ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 ) → 𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
14 1 adantr ( ( 𝜑𝐴 = 𝐶 ) → 𝑅 ∈ V )
15 simpr ( ( 𝜑𝐴 = 𝐶 ) → 𝐴 = 𝐶 )
16 6 adantr ( ( 𝜑𝐴 = 𝐶 ) → 𝐶 𝑅 𝐵 )
17 15 16 eqbrtrd ( ( 𝜑𝐴 = 𝐶 ) → 𝐴 𝑅 𝐵 )
18 14 17 frege91d ( ( 𝜑𝐴 = 𝐶 ) → 𝐴 ( t+ ‘ 𝑅 ) 𝐵 )
19 13 18 5 mpjaodan ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )