Metamath Proof Explorer


Theorem frege98d

Description: If C follows A and B follows C in the transitive closure of R , then B follows A in the transitive closure of R . Similar to Proposition 98 of Frege1879 p. 71. Compare with frege98 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege98d.a φ A V
frege98d.b φ B V
frege98d.c φ C V
frege98d.ac φ A t+ R C
frege98d.cb φ C t+ R B
Assertion frege98d φ A t+ R B

Proof

Step Hyp Ref Expression
1 frege98d.a φ A V
2 frege98d.b φ B V
3 frege98d.c φ C V
4 frege98d.ac φ A t+ R C
5 frege98d.cb φ C t+ R B
6 brcogw A V B V C V A t+ R C C t+ R B A t+ R t+ R B
7 1 2 3 4 5 6 syl32anc φ A t+ R t+ R B
8 trclfvcotrg t+ R t+ R t+ R
9 8 a1i φ t+ R t+ R t+ R
10 9 ssbrd φ A t+ R t+ R B A t+ R B
11 7 10 mpd φ A t+ R B