Metamath Proof Explorer


Theorem frege98d

Description: If C follows A and B follows C in the transitive closure of R , then B follows A in the transitive closure of R . Similar to Proposition 98 of Frege1879 p. 71. Compare with frege98 . (Contributed by RP, 15-Jul-2020)

Ref Expression
Hypotheses frege98d.a ( 𝜑𝐴 ∈ V )
frege98d.b ( 𝜑𝐵 ∈ V )
frege98d.c ( 𝜑𝐶 ∈ V )
frege98d.ac ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 )
frege98d.cb ( 𝜑𝐶 ( t+ ‘ 𝑅 ) 𝐵 )
Assertion frege98d ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 frege98d.a ( 𝜑𝐴 ∈ V )
2 frege98d.b ( 𝜑𝐵 ∈ V )
3 frege98d.c ( 𝜑𝐶 ∈ V )
4 frege98d.ac ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐶 )
5 frege98d.cb ( 𝜑𝐶 ( t+ ‘ 𝑅 ) 𝐵 )
6 brcogw ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ( t+ ‘ 𝑅 ) 𝐶𝐶 ( t+ ‘ 𝑅 ) 𝐵 ) ) → 𝐴 ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) 𝐵 )
7 1 2 3 4 5 6 syl32anc ( 𝜑𝐴 ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) 𝐵 )
8 trclfvcotrg ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 )
9 8 a1i ( 𝜑 → ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) )
10 9 ssbrd ( 𝜑 → ( 𝐴 ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) 𝐵𝐴 ( t+ ‘ 𝑅 ) 𝐵 ) )
11 7 10 mpd ( 𝜑𝐴 ( t+ ‘ 𝑅 ) 𝐵 )