Step |
Hyp |
Ref |
Expression |
1 |
|
frege97d.r |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
2 |
|
frege97d.a |
⊢ ( 𝜑 → 𝐴 = ( ( t+ ‘ 𝑅 ) “ 𝑈 ) ) |
3 |
|
trclfvlb |
⊢ ( 𝑅 ∈ V → 𝑅 ⊆ ( t+ ‘ 𝑅 ) ) |
4 |
|
coss1 |
⊢ ( 𝑅 ⊆ ( t+ ‘ 𝑅 ) → ( 𝑅 ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ) |
5 |
1 3 4
|
3syl |
⊢ ( 𝜑 → ( 𝑅 ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ) |
6 |
|
trclfvcotrg |
⊢ ( ( t+ ‘ 𝑅 ) ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) |
7 |
5 6
|
sstrdi |
⊢ ( 𝜑 → ( 𝑅 ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) ) |
8 |
|
imass1 |
⊢ ( ( 𝑅 ∘ ( t+ ‘ 𝑅 ) ) ⊆ ( t+ ‘ 𝑅 ) → ( ( 𝑅 ∘ ( t+ ‘ 𝑅 ) ) “ 𝑈 ) ⊆ ( ( t+ ‘ 𝑅 ) “ 𝑈 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ( 𝑅 ∘ ( t+ ‘ 𝑅 ) ) “ 𝑈 ) ⊆ ( ( t+ ‘ 𝑅 ) “ 𝑈 ) ) |
10 |
2
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑅 “ 𝐴 ) = ( 𝑅 “ ( ( t+ ‘ 𝑅 ) “ 𝑈 ) ) ) |
11 |
|
imaco |
⊢ ( ( 𝑅 ∘ ( t+ ‘ 𝑅 ) ) “ 𝑈 ) = ( 𝑅 “ ( ( t+ ‘ 𝑅 ) “ 𝑈 ) ) |
12 |
10 11
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑅 “ 𝐴 ) = ( ( 𝑅 ∘ ( t+ ‘ 𝑅 ) ) “ 𝑈 ) ) |
13 |
9 12 2
|
3sstr4d |
⊢ ( 𝜑 → ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ) |