Metamath Proof Explorer


Theorem frege89

Description: One direction of dffrege76 . Proposition 89 of Frege1879 p. 68. (Contributed by RP, 1-Jul-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege89.x X U
frege89.y Y V
frege89.r R W
Assertion frege89 f R hereditary f w X R w w f Y f X t+ R Y

Proof

Step Hyp Ref Expression
1 frege89.x X U
2 frege89.y Y V
3 frege89.r R W
4 1 2 3 dffrege76 f R hereditary f w X R w w f Y f X t+ R Y
5 frege52aid f R hereditary f w X R w w f Y f X t+ R Y f R hereditary f w X R w w f Y f X t+ R Y
6 4 5 ax-mp f R hereditary f w X R w w f Y f X t+ R Y