Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Richard Penner  
				Propositions from _Begriffsschrift_  
				_Begriffsschrift_ Chapter III Following in a sequence  
				frege89  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   One direction of dffrege76  .  Proposition 89 of Frege1879  p. 68.
         (Contributed by RP , 1-Jul-2020)   (Revised by RP , 2-Jul-2020) 
         (Proof modification is discouraged.) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						frege89.x  
						  ⊢   X  ∈  U         
					 
					
						 
						 
						frege89.y  
						  ⊢   Y  ∈  V         
					 
					
						 
						 
						frege89.r  
						  ⊢   R  ∈  W         
					 
				
					 
					Assertion 
					frege89  
					   ⊢   ∀  f     R  hereditary  f   →    ∀  w     X  R  w   →   w  ∈  f         →   Y  ∈  f            →  X   t+  ⁡  R     Y        
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							frege89.x  
							   ⊢   X  ∈  U         
						 
						
							2  
							
								
							 
							frege89.y  
							   ⊢   Y  ∈  V         
						 
						
							3  
							
								
							 
							frege89.r  
							   ⊢   R  ∈  W         
						 
						
							4  
							
								1  2  3 
							 
							dffrege76  
							    ⊢   ∀  f     R  hereditary  f   →    ∀  w     X  R  w   →   w  ∈  f         →   Y  ∈  f            ↔  X   t+  ⁡  R     Y        
						 
						
							5  
							
								
							 
							frege52aid  
							    ⊢    ∀  f     R  hereditary  f   →    ∀  w     X  R  w   →   w  ∈  f         →   Y  ∈  f            ↔  X   t+  ⁡  R     Y      →    ∀  f     R  hereditary  f   →    ∀  w     X  R  w   →   w  ∈  f         →   Y  ∈  f            →  X   t+  ⁡  R     Y           
						 
						
							6  
							
								4  5 
							 
							ax-mp  
							    ⊢   ∀  f     R  hereditary  f   →    ∀  w     X  R  w   →   w  ∈  f         →   Y  ∈  f            →  X   t+  ⁡  R     Y