Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Following in a sequence
frege89
Metamath Proof Explorer
Description: One direction of dffrege76 . Proposition 89 of Frege1879 p. 68.
(Contributed by RP , 1-Jul-2020) (Revised by RP , 2-Jul-2020)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
frege89.x
⊢ X ∈ U
frege89.y
⊢ Y ∈ V
frege89.r
⊢ R ∈ W
Assertion
frege89
⊢ ∀ f R hereditary f → ∀ w X R w → w ∈ f → Y ∈ f → X t+ ⁡ R Y
Proof
Step
Hyp
Ref
Expression
1
frege89.x
⊢ X ∈ U
2
frege89.y
⊢ Y ∈ V
3
frege89.r
⊢ R ∈ W
4
1 2 3
dffrege76
⊢ ∀ f R hereditary f → ∀ w X R w → w ∈ f → Y ∈ f ↔ X t+ ⁡ R Y
5
frege52aid
⊢ ∀ f R hereditary f → ∀ w X R w → w ∈ f → Y ∈ f ↔ X t+ ⁡ R Y → ∀ f R hereditary f → ∀ w X R w → w ∈ f → Y ∈ f → X t+ ⁡ R Y
6
4 5
ax-mp
⊢ ∀ f R hereditary f → ∀ w X R w → w ∈ f → Y ∈ f → X t+ ⁡ R Y