Metamath Proof Explorer


Theorem frege93

Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x XU
frege91.y YV
frege91.r RW
Assertion frege93 fzXRzzfRhereditaryfYfXt+RY

Proof

Step Hyp Ref Expression
1 frege91.x XU
2 frege91.y YV
3 frege91.r RW
4 vex fV
5 4 frege60c fzXRzzfRhereditaryfYf[˙f/f]˙Rhereditaryf[˙f/f]˙zXRzzf[˙f/f]˙Yf
6 sbcid [˙f/f]˙RhereditaryfRhereditaryf
7 sbcid [˙f/f]˙zXRzzfzXRzzf
8 sbcid [˙f/f]˙YfYf
9 7 8 imbi12i [˙f/f]˙zXRzzf[˙f/f]˙YfzXRzzfYf
10 5 6 9 3imtr3g fzXRzzfRhereditaryfYfRhereditaryfzXRzzfYf
11 10 axc4i fzXRzzfRhereditaryfYffRhereditaryfzXRzzfYf
12 1 2 3 frege90 fzXRzzfRhereditaryfYffRhereditaryfzXRzzfYffzXRzzfRhereditaryfYfXt+RY
13 11 12 ax-mp fzXRzzfRhereditaryfYfXt+RY