Metamath Proof Explorer


Theorem frege94

Description: Looking one past a pair related by transitive closure of a relation. Proposition 94 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege94.x XU
frege94.z ZV
frege94.r RW
Assertion frege94 YRZXt+RYfwXRwwfRhereditaryfZfYRZXt+RYXt+RZ

Proof

Step Hyp Ref Expression
1 frege94.x XU
2 frege94.z ZV
3 frege94.r RW
4 1 2 3 frege93 fwXRwwfRhereditaryfZfXt+RZ
5 frege7 fwXRwwfRhereditaryfZfXt+RZYRZXt+RYfwXRwwfRhereditaryfZfYRZXt+RYXt+RZ
6 4 5 ax-mp YRZXt+RYfwXRwwfRhereditaryfZfYRZXt+RYXt+RZ