Metamath Proof Explorer


Theorem frege94

Description: Looking one past a pair related by transitive closure of a relation. Proposition 94 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege94.x X U
frege94.z Z V
frege94.r R W
Assertion frege94 Y R Z X t+ R Y f w X R w w f R hereditary f Z f Y R Z X t+ R Y X t+ R Z

Proof

Step Hyp Ref Expression
1 frege94.x X U
2 frege94.z Z V
3 frege94.r R W
4 1 2 3 frege93 f w X R w w f R hereditary f Z f X t+ R Z
5 frege7 f w X R w w f R hereditary f Z f X t+ R Z Y R Z X t+ R Y f w X R w w f R hereditary f Z f Y R Z X t+ R Y X t+ R Z
6 4 5 ax-mp Y R Z X t+ R Y f w X R w w f R hereditary f Z f Y R Z X t+ R Y X t+ R Z